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Radar observations recently made from a satellite orbiting above the
lonosphere provide evidence for resonances of a plasma in a magnetic field
which may be excited and detected by a dipole. The plasma may be said to
be resonant, for a particular mode and frequency, if the group velo@ity is
zero. These resonances are studied theoretically on the assumption that
the dipole is of infinitesimal extent and that the plasma is excited by a
charge or current impulse. The former assumption restricts the validity
of the results to the asymptotic response of the plasma. The latter
assumption is not a.restriction.

There are two electromagnetic resonances at the positive-frequency
roots of wiQw-T2 = 0, where @ 1is the electron gyro frequency and I
the electron plasma frequency, which occur at k = O. There is also a

resonance at w = O, k = o, but this cannot be treated by the infinitesimal-

dipole approximation and is deferred for separate study. W




"Electrostatic" resonances are treated in the qpési—electrostatici
i approximation. The resonant frequencies are 1I, (H2+Q2)1/2, and nQ,
n=2,3...,and k=0 at resonance. The infinitesimal-dipole model
breaks down for the n’; 2,3,4% cyclotron harmonics, but the infinitesimal
line-dipole model and a line-charge model do not.

The anal&sis shows that the oscillations decay asymptotically as an
inverse power of time. The analysis also indicates that the response
would be significantly stronger than is observed if measurements were
made with a stationary dipole, indicating that the observed duration of
the resonances is to be ascribed to the finite velocity of the satellite

with respect to the exospheric plasma.
1. INTRCDUCTION

Experiments carried out with the Alouette Topside Sounder? have shown,
in addition to the records which clearly deal with propagation and reflec-
tion phenomena, signals which have been termed "spikes" or "resonances."
These signals are of such a character that the plasma may be said to "ring"
when excited at one of a discrete set of frequencies. If a plasma is
excited in a localized region, the power lost from that region depends
upon the group velocity of the excited waves. Hence if, for a particular
frequency, the grouw velocity is zero, the plasma is resonant in the sense
that there is no energy lost by propagation. At the heights in the earth's‘
atmosphere at which Alouette is operated, the collision frequency of elec-
trons is sufficiently small that such resonances show up very clearly.

The sense in which a plasma may be said to be resonant at frequencies

corresponding to modes of zero group velocity has been previously discussed,2
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ana some of the frequencies (those corresponding to electrostatic modes
in a cold plasma in a megnetic field) identified: w = Q, I, (92+H2)l/2,
where Q 1is the electron gyro frequencyrand I is the electron plasma
frequency. If the same criterion is applied to electromagnetic modes of
a cold plasma and to electrostatic modes of a hot plasma (taking into
account the effect of electron temperature), one obtains the full set of
resonances observed by Alouette, as we shall see in the course of this
article.

One now faces the problem of calculating the_magnitude/and time var-
iation of the response of the plasma when disturbed in such a way as to
excite one of the resonances. This is the problem investigated in this
report.

The technique used is based upon a ''small-antenna approximation.”
We suppose the plasma to be excited by a dipole antenna, the dimensions
of the dipole being small compared to the wavelengths of all waves which
contribute to the observed signal. The conditions for tH? validity. of
this approximation will vary from case to case and are best investigated
a posteriori. It is sufficient to consider the antenna to be excited by
a O-function impulse in time, since an arbitrary wave packet can be
synthesized from such impulses. Following such an impulse, the electric
field at the antenne has finite wvalues at finite times after the impulse,
and it is the magnitude and direction of this field which we calculate.
From the results of such a calculation, it would be possible to predict

the signal measured by an antenna of given dimensions, following the

transmission of a pulse of given characteristics.

s ——

Sinimian,



2. BASIC EQUATIONS

The calculations to be presented are based upon the theory of waves
in plasma, as ﬁresented by Stix.® The notation is identical to that of
Stix, except that it is considered more convenient to measure current in
emu rather than esu. The basic equation which we need is that which
relates the electric field E(x,t) set up in a plasma to the currents
j(x,t) introduced into the plasma by means external to the plasma, namely,

the antenna. We introduce Fourier transforms according to the notation

ff dslgdwei(l’g'}“(‘-wt)cp(ls,w) (2.1)

(2::)'4ff ds}gdte—i(ls"%-wt)@(g,t) (2.2)

One may infer from the context whether a function or its Fourier transform

CP(},S)t)

1l

(p(lﬁyw)

1s intended when the arguments are not given explicitly. By a slight
extension of the calculation leading to Eq. (5.1.17) (Eq. (17), Chap. I of

Stix”), one arrives at the following basic relation between E(k,w) and

i

i(k,w):

2 Law .

KnkpB+- 3 KE=-1— ] (2.3)

W

Following Stix, we assume that the magnetic field is oriented along
the z-axis, and that the wave vector lies in the x-z plane, so that it may
be written as

k = % n(sin6,0,cos6) (2.4)

Then, using (S.1.20), we find that (2.3) may be expressed as

S-n2cos26 -iD = n®cosfsiné Ex Jx
. bre
| . , Lphme| (2.5)
iD S-n Ey Iy ,

n®cos6siné . P-n®sine Eg Jz
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In the cold-plasma epproximation, which is appropriate for the discussion

of electromagnetic resonances in the next section,

2 2 2
P'=l--§)—2, R=1-R%_-§-5, L=l'w(_i+a—)’
(2.6)
S = %(R+L) »  D=%(r1)
The determinant of the matrix occurring in (2.5) is expressible as
é;= An%-Bn?+C (2.7)
where
A = Ssin®6+Pcos®6
B = RLsin®6+PS(1l+cos=8) (2.8)
C = PRL
We are concerned with the solution of the dispersion relation
(w,n,0) = 0 ' (2.9)

for which the group velocity is zero. By referring to the formula for the

components of grouwp velocity in polar coordinates

B -c(aﬁyan)
Bk T S (oRow) o (38on)

(2.10)
-(c/n) (3R/30)

w(30/dw) -n (3f)/an)

U.9=

or by referring to the literature on waves in plasmas, one finds that these
resonances fall into two classes, one with n = O and one with n = w. The
first class is readily seen from (2.7) and (2.8) to correspond to values
of w for which

P=0, R=0, or L=20 (2.11)
that is (considering at this time only positive frequencies)

w=T1, w = wg , or W= wr (2.12)
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whére wg and wy, are the positive roots of R = 0 and L = 0, respectively.
These are the resonances which we shall first investigate in Section 3.

The resonances n = ® will be discussed in Sections 4 to 7. The
effects of thermal velocities are important to these modes (which are
quasi-electrostatic), whereas thermal effects are unimportant for the
resonances n = 0. One may see this by noting that the n = O modes have
infinite phase velocities so that there will be no interaction between
these modes and thermal motion of particles, whereas the n = « modes
have zero phase velocities, leading one to expect that the interaction
of waves with particles will be significant in this case.

Although the dispersion relation (2.7) shows that there is an elec-
tromagnetic resonance at w =1, we knowhthere is also an electrostatic
resonance at the same frequency, as may be seen by considering the limit
n—+« and the angle 06 = 0. When one comes to investigate these resonances
one finds that they cannot be distinguished, since, if 6 = 0, P = O is the
solution of the dispersion relation for all values of n. Hence it-is .
essential to include the effect of temperature in the calculation of this-
resonance, and the principal contribution comes from high wave numbers,
corresponding to electrostatic modes. It is therefore unnecessary to con-
sider the "electromagnetic" resonance P = O in (2.11), so that the only

electromagnetic resonances we need to consider are R = O and L = 0.
3. ELECTROMAGNETIC RESONANCES

One may verify from (2.5) that the modes R = 0 and L = O are purely
transverse in the sense that E, = 0. In consequence, the current which

drives these resonances must have j, = O. We therefore consider the
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eiternal current, which is to be localized in space ana in time, to be of
the form A

i(x,t) = 8%(x)8(t) (cosp,-51n9,0) (3.1)
Appropriate transformatidn of the x-y coordinates would result in a
current vector parallel to the x-direction and a wave vector %k with
arbitrary direétion, with spherical polar angles k,6,9.

We find from (2.5) that the electric field produced by the current

(3.1) may be written as

Ey of 1 Ex ol 2
= Ege , = Be ™Y

Ey i Ey -i

(3.2)

for the two resonances R = 0, L = 0, respectively. The coefficients are

given by
Lye -4 1
= -1 —= (2x)
TR o oR-n?(1+cos230)
(3.3)
. Lxe -4 1
B = -i =—= (27)
L w 2T~n2(1+c0s20)

where we retain terms in R, L, and n to the lowest significant order only.

If we write the solutions of R =0 as w= w and those of L =0

2
as W= Wy, We see that
Wp = wg o, =W, W = Wp, -wR (3.4)
Since we shall be coﬁcerned with frequencies close to wr or w;, we write
w = wthw , w = wzﬁﬁw . (3.5)

for the two cases. We find from (2.6) that

AR:.(_E_%QAQ), AL:-(EL;I—;-’.@-ACO (3.6)

Hence, formula (3.3) reduces to



ER = -i(2ﬁ)-s ell® 1 )
wp (2wp-2) Aw ok c®1%k2(1+cos20)
2 w.B(2u,-9)
3.7
Ep, = -i(2x)” ell” L > >
w1(2w1+ﬂ) 1 c212k® (1+c0s26)
“T2 wlz(ewlm)
J

It is now possible to evaluate the electric field at the antenna by
means of the Fourier transformation (2.1). Since Er, Ep, are independent

of @, this integration may be performed immedistely, so that we cbtain

Ep(0,t) = f/fem«:zsinedkdedwe-ithR(k,Q,w) (3.8)

and a similar equation for Ej. The integration of w may be performed
immediately, the appropriate contour being determined by the requirement

that E=0if t < 0. (See Eq. (A.1).) Hence,

‘2 - 2 2_ %{2 l 26
Eg(0,t) - ——_EE——ES e 1wrt&/ypk sin6dkdexp| -1 1 ¢l (1+cos )“t

an wr(Ewr 2 wr2(2wr-9)
(3.9)
The integration over k may be carried out (Eq. (A.8)) and leads to
. 2 1/2 | '
-a/2 -1/2 i(w/4) w.5(2w,- Q) -iwt [T a8siné
ER(O)t) =2 EL e 2r.3/2 2.\8/2
c It o (l+cos®e6)~'"
(3.10)

The integration over 6 may be cerried out and the above equation then

becomes 1/2

) 2 _ .
-1/2e1(ﬂ/4) wp (2w,-9) . 3/2 -int

e
e2n

(3.11)

Eg(0,t) = % 7t

If, finally, we combine the four contributions corresponding to the four
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frequencies given by (3.4), and if we choose ¢ = O so that the dipole is
parallel to the x-axis, we find that the components of electric field are

given by

. /2
o) W
ﬂl /2021.1,63 /2 \ R

b X

1/2
7 LL)LZ ( EUJL'*'Q)
L) 7 1122 372 cos\w

Y (3.12)

1/2 1
sz(QwR- Q) . 1 wL2(2wL+Q) ) x
Ey(O,t) = T2 252 sin th-E - VIS sin th—-H J

We see from the above formulas that the electric field is composed of two
components, one rotating to the right with the frequency wg and the
othexr rctatiﬁg to the left with the frequency W Tt is curious, at
Tirst sight, that the magnitude of the electric field should vary inversely
with I  As Il becomes smaller, there is less frequency spreading among
neighboring wave numbers, and this effect proves to be more important than
the term @I in the numerator of Egs. (3.7). We should note, moreover, that,
for an antenna of finite dimensions, the formulas (3.12) are asymptotic
and we may verify that the time at which these formulés become valid becomés
longer as [ becomes smaller.

We may see this by noting that the contribution to the integral (3.9)
is modified by the antenna geometry for sufficiently large wave‘numbers.
Hence, formulag»(3.lé) are valid only if the integral (3.9) is substantially
wnaffected when the integral is truncated at Xk = k,, where kA-:L is a
characteristic dimension of the antenna. This will be the case only if
“t 3> ta, where .

cznakAz

c2n2kA2.
wp ™\ 2wp-{l

—— t¢ = .1
wp 2 (2w +0) c=1 (3.13)

1l or
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The values of the electric field which we obtain at t = t,, if the

formulas (3.12) are extrapolated to this time, are

CHZKAS W
IEle = —75
¢ wR(EQR-Q)
(3.14)
cHZk 3 >
lE‘C = 1z .
i wL( 2wL+sz)
J

These formulas are, of course, not a reliable estimate of the magnitude of
the field at this time; they are included merely as a verification that

the response becomes small as the plasma density becomes small.
L, EQUATIONS FOR QUASI-ELECTROSTATIC RESONANCES IN A HOT PLASMA

The remaining resonances which we shall consider either do not occur

in the theory of a cold electron plasma (harmonics of the cyclotron fre-

quency) or cannot be evaluasted on the basis of the cold-plasma model (plasma
resonance and the hybrid resonance). For this reason, we must now set up
equations for a plasma of nonzero temperature. Since the dependencé of -
freqguency on wave number will now be determined by the mean thermal speed
rather than the speed of light, the significant range of phase velocities
will be comparable in magnitude to the thermal speed; For this reason, we
may adopt the quasi-electrostatic approximation which 1s equivalent to
setting ¢ = w.

In the quasi-electrostatic approximation, the rf magnetic field is
of no significance and the rf electric field may be derived from a scalar
electric potential ¢. On noting that

E = -ik0 (4.1)

and

(4.2)

14
L3

'
C_1,
]
ole
©




we Tind that (2.3) leads to

where

We i

where

F = 35Kk

nd from Stix (5.9.103) that

F=kX +3 L [2y2¢~A V In(A

L

==
v is defined by

% mvZ = kT
V2 (kxa‘*‘k; 22 )
A= >
24

.
5]
i

1+ 2 F
* V&g o(an)

_ wn
vk,

(&.3)

(k)

(%.5)

(4.8)

(%.9)

In(A\) is a Bessel function in the notation of Watson® and Fo(an) is the

funet

where

On expanding the function F

Vv appears only to lowest significant order, one arrives at

ion defined by (S.8.34):

1/2 kg
| kg

2 N2 _2
S(z) = 72 Jf et at
o

Fy =

5 2
F = k2-ﬂé kzcosze-——g—— k“sin®o- 3'2_
w w?-Q2
o 4 .4 2 2( 2 2
+ % 11 22k9512 9__% 17w (w +3Qs) v?k*cos26sin?0
= 2 (ws-07) 0% (w*-07)
Oa\.
- wzz L n202  v23*sinMg
2=t WPon202 Q=
n=2
where

we have now adopted polar coordinates for the wave vector XK.

exp (~an®) +218(an)

(4.10)

(k.11)

so that for each resonance the thermal speed

v2k cos 94—2 92 = vk*cos20sin26

(k.12)
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. 5. RESONANCE AT THE PLASMA FREQUENCY

It is well known that the plasms has a resonance at w =1, 8 = O,
k = 0. HEnce,.to investigate this resonance, we derive the following

approximation for F, good for small values of wZ-Hz, 9 and k:

2 7-22
F = %5 <§2-n?-+ > %2 -2 ?k%> (5.1)

This resonance is excited by a dipole in the same direction as the
magnetic field, so we write
plx,t) = a(x)s(y) B2 (5 (5.2)
which has the Fourier transform
o,w) = (2) “ikcoso (5.3)
The electric field components Ey and Ey vanish ;t the origin. We find,
from (2.1), (4.3), and (5.3), that
E,(0,t) = Lﬂ(Eﬁ)_éh/)C/\dw2ﬁkzsin6dkd8 539§§f§ o~ 1wt (5.4)

The integration over frequency may be carried out by using (A.2), and we

obtain

i . B 2 V22
E;(0,t) =R % HL/ypdkk2d951necoszeexpt?<ﬁ -% Eg%ﬁg 6 -ki >1ﬁ (5.5)

where R 1indicates the real part of a complex expression.
We may carry out the integrations over 0 and k by using Egs. (A.7) and
(A.9). On noting that the 6 integration contains two equal contributions,

one for &8 = % the other for € = 0, we arrive at

' T S (s )
E,(0,t) = 33/2ﬂl/2 =3 t5/2 cos +34 (5.6)
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6. THE HYBRID RESCNANCE

We next investigate the hybrid resonance which occurs at the frequency
2, .2\1/2 ' . . ) X
(I2+6=) for wave vectors with orientation 6 = %/2. For this reason
we introduce the symbol

v ==-8 . (6.1)

nola

and select from (4.12) the relevant terms of lowest order in w2-12-02,

k, and V:

X[ 2p2 2, 0°TF 2 1 é)
F = = <§ n=-q *-H2+92 v vk (6.2)

This resonance will be excited by a dipole normal to the magnetic

field, so we adopt

o) = 2 s()s(2)s00) (6.3)
which has the Fourier transform
p(k,w) = 1(2n) " *kcosycos® (6.4)

when expressed in polar coordinates. Similarly, the x-component of the

electric field will be given by .
Ey(k,w) = -i9(k,w)kcosycos® (6.5)

Hence, we find that the nonzero component of electric field at.the origin

is given by

2 . s it
B (0,t) = (2x) fffamam{ aveos®y < (6.6)

when one carries out the integration over @.

Integration over frequency is seen from (A.2) to give

e di __IF u[yp 2 .[ 2.2y 2
Ex(0,%) = R ey dkk "~ dyexp {} (I%+0%)

1 mR® 1 Ve
-5 " - ]% (6.7)
2 (H2+92)3/2 L (H2+92)l/2




where we have made the approximation cosv = 1. We may perform the

integrations over k and ¥ Dy using Egs. (A.8) and (A.6) and so obtain

. o 2 -
Ex(0,t) = 2%/2 _H_(Lg_ﬂl V_é- 52— cos [(H‘gmg)l/zt-%} (6.8)

7. HARMONICS OF THE CYCLOTRON FREQUENCY

The function F given by (L.12) has zeros near the harmonics of the

cyclotron frequency w = nd, n > 2, and we shall proceed to evaluate the
symptotic form of the excitation associated with these resonances. It is

curious that the function does not give a resonance at w = Q. The reason
for this may be traced to the fact that, for w close to §, the dominant
terms on the right-hand side of (L.12) are the third and the seventh, and
that these have the same sign.

If we select from (L4.12) the terms which are dominant for the nth

harmonic, we arrive at

an . _2n
Bk sinT 8
F = A(6)¥* - R - (7.1)
wnere
@ n2-cos®9
A =1 - = —— .2
() Z B (7.2)
and
B = Z L (7.3)
- oe2n-2 2n-2 :
2 (n-1)t Q

If 302 > 12, A(6) has no zero; we shall assume that the parameters are
restricted in this way.
If we again consider the dipole to be oriented as in (6.3), we obtain

the following expression for the electric field at the origin:



e [P - 1wt
Ex(0,t) = (2=) ijfdwdkk‘*desinse = ;w (7.4)

On integrating over frequency this expression becomes

5ip20t3g 1 p 202 on
Ex(0,t) = R gmffok 62— 2 exp[:l nQ+35 § Tqg sinT o)t
(7-5)
We may perform the integration over k by using (A.11) and so obtain
ant+i
. . 2n+3 2n-2
- T elKn inQt sin g 2AnQ .
Ex(0,t) = nﬂ n e 66" o (7-6)
which becomes
3
2{n-1)
. 1 n ' .
Ex(0,t) =-= <%;Q> Inb/\ 2n_5d9 - 2%+1 sin(nQt+xp) (7.7)
Azn‘2sinn" le t2rl*2

We see from the integral over 6 that this integral will diverge if
n = 2,3,4. Hence, for these harmonics, the simple dipole model for the
antenna is inappropriate. However, the integral is convergent for n > 5.

For these values of n, the formula (7.7) may be rewritten as

2(n-1 Q\zn- . .
Ex(0,t) =--§ In <:( 2 di/\ = . 2i+1 sin(nQt+ky)
o 4202 A1 tzn-
(7.8)

by using (7.3)-

A simple model for an antenna which ylelds a finite result for all
harmonics of the cyclotron frequency is that of a line dipole, which may
be regarded as a limiting case of an antenna formed by two long parallel
wires. Accordingly, we consider the case that the plasma is excited by a

charge distribution given by

%) 5(y)5(t) (7.9)
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inis assumes that the antenna is peralliel to the magnetic field. The
Fourier transform of this charge distribution is
—3' .
o(k,w) = (en) Tikyd(k,) (7.10)
On using (%.3), we obtain the following expression for the electric field
at the origin:
iwt

. 2 -1 -
Ex(0,t) = un(zﬁ)'sffﬁgdu Kx 6(1‘;)6 (7.12)

On using (7.1), introducing cylindrical polar coordinates %k, ¥ for the
kxky‘ plane, and integrating over the angle V, this becomes

(2 22} ~iwt
By (0,t) = —%{ffdwdk k(w™-n707)e —— (7.12)
Ao[wz-nzﬂg' (B/Ao)k ]

where Ay = A(0) so that

HZ

e (7.13)

Ao=l"'
n

We may integrate over frequency with the help of (A.2) and (A.4) to obtain

o L B &n= 4 5 B [BE -
Ex(0,t) =R o0 B2 fdld«: exp [,<nn+2mo k >t] (7.14)

We may use the notation of (A.12) to evaluate (7.14) and obtain

1

_ !Q_‘m 2
Ey(0,t) =-8[%§_J Jn% %2 ln sin(nQt+iy) (7.15)

Ai-T T=1
Ag t

Finally, we shall investigate another model for the excitation of
cyclotron harmonic resonances which is closer to the Alouette experiment
than the previous two models. Since the dimensions of the wave packets
are probably small compared with the length of the large antenna, we may
approximate any short length of the antenna by a line charge. Hence, we

consider the excitation



p(x,t) = 3(x)3(y)s(t) (7.16)
with Fourier transform
-3
o(x,w) = (2n) "8(k,) (7.17)

We allow for the fact that the line charge may not be parallel to the
magnetic field by now writing

B = (Bsin®, 0, Bcos®) (7.18)
so that ® is the angle between the line charge and the magnetic field.
Equations (2.1) and (%.3) show that the electric poteatial at the line

charge 1is given by

i(kzz-wt)
23 Y -3 e
0(0,0,2,5) = [ | atuba(en) s () e (7.19)
confirming that the potentizl is independent of =z.
It is convenient to introduce the polar coordinates
ky = keos¥ ,  k, = ksiaV (7.20)

so that 9, the angle between the wave vector and the magnetic field, is
given by

cosd = sinBcosy (7.21)
Integrations over w and X proceed without difficulty with the help of

Egs. (A.2) and (A.7), leading to

2%
1 1 cosnQt dy
@(0,t) = - = = —== f (7.22)
’ o wn-l 0t o l-ﬂf n2-sin®Bcos3y
0z n2(n2-1)

Evaluation of this integral is straightforward, and finally leads to

/2 -1/2/5
9(0,1) =- 2 2™’ <32-> A <;2-®>30—S§93 (7.23)
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8. DISCUSSION

The resonances listed and discussed in this article represent those
observed on thé Alouette satellite experiment, except for the observed
resonance at the electron cyclotron frequency, which has not shown up in
our calculations. This indicates that the fundamental cyclotron resonance
is different in nature from the harmonic cyclotron resonances, an infer-
ence in eccord with the recent experiments of Crawford, Kino, and Weiss®
on cyclotron resonances in a mercury-vepor discharge. It is possible
that this resonance is to be assoclated with the right-hand polarized

electromagnetic wave which has the dispersion relation n® = R, that is,

2 2 TPuw
c%k® = w G (8.1)

for 6 = 0, since the growp velocity vanishes for k = ®©, w= Q, Since
this resonance occurs for high wave numbers, it would be inappropriate to
use the infinitesimal-dipole gpproximation, and it would be necessary to
consider a model of finite dimensions. Another possibility will bé men-
tioned later.

Data concerning the Alouette satellite are given by Thomas and Sader.6
For present initial estimates, we consider the partiéular values

Q/ent = 10° sec™t, U/ex = 2.10°% sec”*.

For frequencies in this range (all
but the higher cyclotron harmonics), the longer antenna, of 50 m, is used.
The antenna impedance is given as 400 ohms and the transmitter power as
100 watts, so that the rms current is 0.05 emu. Since the pulse length is
107* sec, the equivalent strength of the current dipole, as used in Sec-

tion 3, is 2.5x10 ° emu. At 1 Mc frequency, the rms charge flowing in the

antenna is 250 esu, leading to an equivalent electric dipole, as used in
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Sections 5 to 7, of strength 125 esu. These estimates are sppropriate if
the transmitter is at precisely the seme Irequency as the resonance, but
should be reduced if the frequencies are not coincident, according to the
spectrum of the transmitter pulse. The receiver sensitivity is quoted as
20 db above kTb. If we take T = 10° deg and the bandwidth Db as 20 ke,
the sensitivity is 3XlO_lé watt or 3><Z|.O—6 volt, co;responding to an elec-
tric Tield strength of 2x10 =~ esu.

The R = 0 resonance occurs at about 1.5 Mc for the figures quoted.
On using formulas (3.12), and noting that these are to be multiplied by
the current dipole moment, we find thet if the transmitter and resonance
fregquencies are matched precisely, E ~ 3XlO—12t—3/2, so that the pulse
should be detectable for 300 msec. This could conceivably be reduced to
about 15 msec if the resonance is excited by a sideband of the transmitter
pulce. However, a similar calculation for the plasma resonance based on
Eq. (5.6) and using the above estimate for the electrostatic dipole moment
and v = l.6><lO6 cm sec” T leads to the conclusion that the resonance should
have been observable for 16 sec, very much longer than that observed (about
5 msec).

The above comparison strongly suggests that the pulse lengths of the
resonances are not determined by the decay process treated in this article,
so that one must consider other processes for decay. One is the effect of
collisions between electrons and other particles but the mean electron
collision frequency is very slow (less than 1 sec_l) at the heights at
which the satellite operates, so that one cannot explain the rapid decay

in this way. Another obvious source of damping is the motion of the sat-

ellite, since the receiver is rapidly moving away from the region excited



o

the transmitter. IHence, one can explein the characteristic decay time

—

of about 5 msec by assuming that the wave_packet is of dimensions of about
50 m, since the satellite speed is sbout 10° cm sec™ . Since this distance
is comparable with the antenna dimensions, it seems very likely that the
rapid decay of resonances is, in fact, due to the speed of the satellite.
However, in order to mske a more precise check of this suggestion, it
would be necessary to extend the theory given in this article to evaluate
the electric field strength as a function of both time and position, fol-
lowing excitation of the plasma by s dipole. It would, of course, be
desirable to include also the finite geometry of the antenna.

We see from (5.5) (and similar equations for other cases) that the
infinitesimal dipole approximetion is valid only for times greater than
some critical time 1T, since the main contribution to the integral should
come from a range of wave numbers smaller than the wave number kA char-

acteristic of the antenna. From (5.5), these quantities are related

approximately by

it

te = 1 (8.2)

o - -1 . . = .
since kp ~ 10 S cm , this leads to Ty = 50 msec. This demonstrates
clearly the necessity for considering the finite antenna geometry in future
calculations.

The calculations of Section 7 show clearly that harmonics of the

D

cyclotron frequency should be excited, and that the response will decrease
only slowly with harmonic number. The line-charge model, which is most
closely related to the Alouette experiments, leads to estimates of the

observeble lifetime of the resonances of order 10° sec. Once again we are
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leG to ascribe the observed duration of the pulse (~1 msec) to the finite
velocity of the satellite. A pulse durat;on of 1 msec indicates a packet
size of 10 m, which is gbout 20 ry, where rq 1s the electron gyro radius.
This is a reascneble estimate for the packet dimensions, suggesting that
it may be possible to estimate more accurately the observable decay of the
cyclotron harmonics without considering the finite antenna geometry.

It is now worth noting that, if the calculations are extended in such
a vway as to allow for a finite streaming velocity of the plasma with respect
to the antenna, the degeneracy which gave a finite value of F at the
cyclotron frequency (see formula (:.12)) will be removed. We should then
find a resonance at a frequency close to the electron gyro frequency.

Although these calculations were prompted by the Alouette experiment,
it appears that they will be more relevant to experimental studies of
similar rescnances in leboratory plasmas, for which the effect of the
plasmz streaming velocity might be aegligible. Such experiments have
been made by Crawford, Kino, and Weiss.>

The theory of Section 7 indicates clearly that electrostatic modes
at nermonics of the electron cyclotron freguency can be strongly excited
by current sources in a plasma. It seems very likely that this fact
underlies the high rioise emission observed at these frequencies in

laboratory plasmas.7



s APPENDIX

The following integrals are used in the text:
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The sppropriate contour of integretion, in the above integrals, 1s that
which runs above the singularities, since the boundary conditions on the

problem require that the integral has value zero if t < O,
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The asymptotic values are
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